Lattice preradicals versus module preradicals

TOMA ALBU AND MIHAI IOSIF

Communicated by Constantin Năstăescu
Dedicated to Professors Nicolae Dinculeanu and Solomon Marcus
in honour of their 90th birthdays

Abstract - This paper investigates the connections between lattice preradicals and module preradicals. We show that to any lattice preradical one associates in a canonical way a module preradical, but not conversely. However, to any module preradical, or more generally, to any preradical on a locally small Abelian category, we may associate a weaker form of a lattice preradical by introducing and investigating a class of subcategories, not necessarily full, of the category \mathcal{LM} of all linear modular lattices, we call linearly closed.

Key words and phrases : Modular lattice, linear modular lattice, lattice preradical, weakly lattice preradical, module preradical, linearly closed subcategory, Abelian category, hereditary torsion theory.

Mathematics Subject Classification (2010) : 06C05, 06C99, 16S90, 18E10.

Introduction

The aim of this paper is to investigate the connections between the lattice preradicals introduced in [4] and the usual module preradicals.

Section 0 collects together some general notation and terminology on lattices, modules, and hereditary torsion theories needed in the sequel.

Section 1 presents some basic definitions and results of [3], [4], and [5] on linear morphisms of lattices and lattice preradicals.

In Section 2 we give the main results of the paper. Firstly, we show that any lattice preradical naturally induces a module preradical, or more generally, a preradical on any locally small Abelian category, but not conversely. Then, we introduce and investigate the concept of a linearly closed subcategory of the category \mathcal{LM} of all linear modular lattices; these are subcategories of \mathcal{LM} that are not necessarily full but enjoy some natural conditions that are in particular satisfied when considering subcategories of locally small Abelian categories or subcategories associated with τ-saturated submodules with respect to a hereditary torsion theory τ on the category $\text{Mod-}R$ of all right R-modules over a unital ring R.
Section 3 presents the more general concept of a preradical on a linearly closed subcategory of $\mathcal{L}\mathcal{M}$. Then, we show that we can naturally associate to preradicals on locally small Abelian categories and module categories equipped with hereditary torsion theories lattice preradicals on the linearly closed subcategories $\mathcal{S}\mathcal{C}_X$ and $\mathcal{S}\mathcal{C}_H$ discussed in Examples 2.7 and 2.9, respectively. In the final part of this section we show how the main results of [5] about lattice preradicals on C_{11} lattices also hold for preradicals on linearly closed subcategories that are weakly hereditary.

0. Preliminaries

All lattices considered in this paper are assumed to be bounded, i.e., they have a least element denoted by 0 and a greatest element denoted by 1. Throughout this paper, L will always denote such a lattice. We shall denote by \mathcal{L} the class of all (bounded) lattices and by \mathcal{M} the class of all (bounded) modular lattices.

For a lattice L and elements $a \leq b$ in L we write

$$b/a := [a, b] = \{ x \in L \mid a \leq x \leq b \}.$$

An initial interval of b/a is any interval c/a for some $c \in b/a$.

For all other undefined notation and terminology on lattices, the reader is referred to [1], [2], [7], and/or [8].

Throughout this paper R will denote an associative ring with non-zero identity element, and Mod-R (respectively, R-Mod) the category of all unital right (respectively, left) R-modules. The notation M_R will be used to designate a unital right R-module M, and $N \leq M$ will mean that N is a submodule of M. The lattice of all submodules of a module M will be denoted by $\mathcal{L}(M)$.

A preradical on Mod-R is a subfunctor q of the identity functor $1_{\text{Mod-}R}$ of Mod-R. This means that q assigns to each right R-module M a submodule $q(M)$ of M such that each morphism $f : M \to N$ in Mod-R induces by restriction a morphism $q(f) : q(M) \to q(N)$, i.e., $f(q(M)) \leq q(N)$.

In this paper $\tau = (\mathcal{T}, \mathcal{F})$ will denote a fixed hereditary torsion theory on Mod-R and $t_\tau(M)$ the τ-torsion submodule of a right R-module M. It is well-known that the assignment $M \mapsto t_\tau(M)$, $M \in \text{Mod-}R$, defines a left exact (pre)radical on Mod-R. For any M_R we shall denote

$$\text{Sat}_\tau(M) := \{ N \mid N \leq M \text{ and } M/N \in \mathcal{F} \},$$

and for any $N \leq M$ we shall denote by \overline{N} the τ-saturation of N (in M) defined by $\overline{N}/N = t_\tau(M/N)$. The submodule N is called τ-saturated if $N = \overline{N}$. Note that

$$\text{Sat}_\tau(M) = \{ N \mid N \leq M, N = \overline{N} \},$$
so $\text{Sat}_\tau(M)$ is the set of all τ-saturated submodules of M.

It is well-known that for any $M_R, \text{Sat}_\tau(M)$ is an upper continuous modular lattice with respect to the inclusion \subseteq and the operations \lor and \land defined as follows:

$$\lor \{N_i\}_{i \in I} := \sum \{N_i\}_{i \in I} \quad \text{and} \quad \land \{N_i\}_{i \in I} := \bigcap \{N_i\}_{i \in I},$$

having least element $\tau(M)$ and greatest element M (see [8, Chapter 9, Proposition 4.1]).

The reader is referred to [8] for more about hereditary torsion theories.

1. Linear morphisms of lattices and lattice preradicals

In this section we recall from [3] and [4] the concepts of a linear morphism and of a lattice preradical, respectively, and list some of their basic properties. We also present from [5] the concept of a weakly lattice preradical.

As in [3], a mapping $f : L \to L'$ between a lattice L with least element 0 and greatest element 1 and a lattice L' with least element $0'$ and greatest element $1'$ is called a linear morphism if there exist $k \in L$, called a kernel of f, and $a' \in L'$ such that the following two conditions are satisfied.

- $f(x) = f(x \lor k)$, $\forall x \in L$.
- f induces a lattice isomorphism $	ilde{f} : 1/k \sim a'/0'$, $\tilde{f}(x) = f(x)$, $\forall x \in 1/k$.

If $f : L \to L'$ is a linear morphism of lattices, then f is an increasing mapping, commutes with arbitrary joins (i.e., $f(\lor \{x_i\}_{i \in I}) = \lor \{f(x_i)\}_{i \in I}$ for any family $(x_i)_{i \in I}$ of elements of L, provided both joins exist), preserves intervals (i.e., for any $u \leq v$ in L, one has $f(v/u) = f(v)/f(u)$), and its kernel k is uniquely determined.

As in [3], the class \mathcal{M} of all (bounded) modular lattices becomes a category, denoted by \mathcal{LM}, (for “linear modular”) if for any $L, L' \in \mathcal{M}$ one takes as morphisms from L to L' all the linear morphisms from L to L'.

The isomorphisms in the category \mathcal{LM} are exactly the isomorphisms in the full category \mathcal{M} of the category \mathcal{L} of all (bounded) lattices. The monomorphisms (respectively, epimorphisms) in the category \mathcal{LM} are exactly the injective (respectively, surjective) linear morphisms. Moreover, the subobjects of $L \in \mathcal{LM}$ can be viewed as the intervals $a/0$ for any $a \in L$.

As in [5], a non-empty class \mathcal{C} of lattices is said to be weakly hereditary if $a/0 \in \mathcal{C}$ for any $L \in \mathcal{C}$ and $a \in L$. According to [6], an abstract class of lattices is a subclass $\emptyset \neq \mathcal{C} \subseteq \mathcal{L}$ which is closed under lattice isomorphisms, i.e., if $L, K \in \mathcal{L}$, $K \cong L$, and $L \in \mathcal{C}$, then $K \in \mathcal{C}$. Thus, a hereditary class of lattices as defined in [6] is nothing else than a weakly hereditary class which additionally is an abstract class.
For any non-empty subclass \(C \) of \(\mathcal{M} \) we shall denote by \(\mathcal{LC} \) the full subcategory of \(\mathcal{LM} \) having \(C \) as the class of its objects.

Let \(C \) be a weakly hereditary subclass of \(\mathcal{M} \). As in [5], a weakly lattice preradical on \(C \) is any functor \(r : \mathcal{LC} \rightarrow \mathcal{LC} \) satisfying the following two conditions.

- \(r(L) \) is an initial interval of \(L \) for any \(L \in \mathcal{LC} \).
- For any morphism \(f : L \rightarrow L' \) in \(\mathcal{LC} \), \(r(f) : r(L) \rightarrow r(L') \) is the restriction and corestriction of \(f \) to \(r(L) \) and \(r(L') \), respectively.

The lattice preradicals defined in [4] are precisely the weakly lattice preradicals on hereditary classes \(C \subseteq \mathcal{M} \). As in the case of “true” lattice preradicals, for a weakly lattice preradical \(r \) on the weakly hereditary class \(C \subseteq \mathcal{M} \), we set \(r(a/0) := a r/0 \) for any \(a \in L \) and \(L \in \mathcal{C} \).

If \(a \leq b \) in \(L \) then \(a/0, b/0 \) are both in \(C \) because \(C \) is weakly hereditary. The inclusion mapping \(\iota : a/0 \hookrightarrow b/0 \) is clearly a linear morphism, thus it is a morphism in \(\mathcal{LC} \). Applying now \(r \) we obtain \(r(\iota) : a r/0 \rightarrow b r/0 \) as a restriction of \(\iota \), and so \(a r \leq b r \).

2. Connections between lattice preradicals and module preradicals

This section contains the main results of the paper. We first show that any lattice preradical naturally induces a module preradical, or more generally a preradical on any locally small Abelian category, but not conversely. Then, we introduce the concept of a linearly closed subcategory of \(\mathcal{LM} \) and show that, based on this, the main results of [5] about lattice preradicals on \(C_{11} \) lattices also hold for preradicals on linearly closed subcategories that are weakly hereditary; so, they can be at once applied to Grothendieck categories and module categories equipped with hereditary torsion theories.

Proposition 2.1. For any lattice preradical \(r \) on \(\mathcal{LM} \), the assignment \(M_{R} \mapsto M^{r} \) defines a preradical \(\mathcal{r} \) on \(\text{Mod}-R \).

Proof. Recall that, when we specialize the notation \(a r/0 : r(a/0) \), \(a \in L \), \(L \in \mathcal{LM} \), for \(L = \mathcal{L}(M_{R}) \) and \(a = M \), we have \(M^{r}/0 = r(\mathcal{L}(M_{R})) \) in the lattice \(\mathcal{L}(M_{R}) = M/0 \).

Clearly \(\mathcal{r}(M) := M^{r} \leq M \). Let \(f : M \rightarrow M' \) be a morphism of right \(R \)-modules. Then \(f \) induces a mapping

\[
\mathcal{f} : \mathcal{L}(M) \rightarrow \mathcal{L}(M'), \quad \mathcal{f}(N) = f(N), \quad \forall N \leq M,
\]

which is a linear morphism of lattices. Since \(r \) is a preradical on \(\mathcal{LM} \), we have

\[
\mathcal{f}(M^{r}/0) = \mathcal{f}(r(\mathcal{L}(M))) \leq r(\mathcal{L}(M')) = M'^{r}/0,
\]

and so, \(\mathcal{f}(M^{r}) \subseteq M'^{r} \), that is, \(f(\mathcal{r}(M)) \subseteq \mathcal{r}(M') \). Thus \(\mathcal{r} \) is a module preradical. \(\Box \)
More generally, we may consider instead of Mod-R any locally small Abelian category. Recall that an Abelian category \mathcal{A} is said to be \textit{locally small} if the class $\mathcal{L}(X)$ of all subobjects of each object X of \mathcal{A} is a set, and in this case, $\mathcal{L}(X)$ is actually a modular lattice. We shall use the standard notation $A \subseteq X$ to designate an element $A \in \mathcal{L}(X)$. As it is well-known, any Grothendieck category is locally small. To extend Proposition 2.1 to a locally small Abelian category \mathcal{A}, it suffices to observe that, by [4, Lemma 5.1], for any morphism $f : X \to Y$ in \mathcal{A}, the induced mapping $f^* : \mathcal{L}(X) \to \mathcal{L}(Y)$, $f^*(A) = f(A)$, $\forall A \subseteq X$, is a linear morphism of lattices.

The next example shows that a module preradical does not necessarily define a lattice preradical.

Example 2.2. For any $M \in \mathbb{Z}$-Mod, denote $r(M) = \{x \in M \mid 2x = 0\}$. Then r is a preradical on \mathbb{Z}-Mod. We claim that there is no lattice preradical r such that r is obtained from r as in Proposition 2.1.

To see this, suppose that such an r exists. Consider the cyclic Abelian groups \mathbb{Z}_2 and \mathbb{Z}_3. Since their lattices of subgroups $\mathcal{L}(\mathbb{Z}_2)$ and $\mathcal{L}(\mathbb{Z}_3)$ are two-element chains, they are isomorphic, and let $\varphi : \mathcal{L}(\mathbb{Z}_2) \xrightarrow{\sim} \mathcal{L}(\mathbb{Z}_3)$ be the (unique) lattice isomorphism. Then $\varphi(r(\mathcal{L}(\mathbb{Z}_2))) \subseteq r(\mathcal{L}(\mathbb{Z}_3))$. But

$$\mathbb{Z}_2^r = r(\mathbb{Z}_2) = \mathbb{Z}_2 \quad \text{and} \quad \mathbb{Z}_3^r = r(\mathbb{Z}_3) = 0,$$

so $r(\mathcal{L}(\mathbb{Z}_2)) = \{\mathbb{Z}_2, 0\}$ and $r(\mathcal{L}(\mathbb{Z}_3)) = \{0\}$, and then

$$\mathbb{Z}_3 = \varphi(\mathbb{Z}_2) \in \varphi(r(\mathcal{L}(\mathbb{Z}_2))) = \{0\},$$

which is a contradiction. \qed

We are now going to investigate when a module preradical produces a sort of a lattice preradical. Thus, we introduce the concept of a \textit{linearly closed} subcategory of the category \mathcal{LM}; these are subcategories of \mathcal{LM} that are not necessarily full but enjoy some natural conditions that are in particular satisfied when considering subcategories of locally small Abelian categories or subcategories associated with τ-saturated submodules with respect to a hereditary torsion theory τ on the category Mod-R.

Definition 2.3. Let \mathcal{SC} be a subcategory (not necessarily full) of \mathcal{LM} having as class of objects a non-empty subclass \mathcal{C} of \mathcal{M}. We say that \mathcal{SC} is \textit{linearly closed} if its class of morphisms $\text{Mor}(\mathcal{SC})$ satisfies the following four properties.

1. If $L \in \mathcal{C}$, $a \in L$, and $a/0 \in \mathcal{C}$, then the inclusion mapping

$$i : a/0 \hookrightarrow L, \quad i(x) = x, \forall x \in a/0,$$
(2) If $L \in C$, $a \in L$, and $1/a \in C$, then the linear morphism

$$p : L \rightarrow 1/a, \quad p(x) = x \lor a, \forall x \in L,$$

is in $\text{Mor}(SC)$.

(3) If $f : L \rightarrow L'$ is in $\text{Mor}(SC)$, k is the kernel of f, and $a' \in L'$ is such that $\bar{f} : 1/k \sim \rightarrow a'/0'$ is the induced isomorphism, then

$$1/k \in C, \quad a'/0' \in C, \quad \text{and} \quad \bar{f} \in \text{Mor}(SC).$$

(4) If $f : L \sim \rightarrow L'$ is in $\text{Mor}(SC)$ and is an isomorphism in \mathcal{LM}, then its inverse f^{-1} is in $\text{Mor}(SC)$ (i.e., f is an isomorphism in SC). □

The next result has a series of consequences that will be essentially used in our forthcoming paper [5] investigating the behavior under lattice pre-radicals of the condition (C_{11}) in modular lattices.

Proposition 2.4. Let SC be a linearly closed subcategory of \mathcal{LM}, let $f : L \rightarrow L'$ be a morphism in SC with kernel k, and let $a, b \in L$ such that $a/0$ and $1'/f(b)$ are in SC. Then $a/((b \lor k) \land a)$ and $f(a \lor b)/f(b)$ are both in SC, and the canonical morphism

$$\bar{g} : a/((b \lor k) \land a) \rightarrow f(a \lor b)/f(b), \quad x \mapsto f(x) \lor f(b),$$

induced by f is an isomorphism in $\text{Mor}(SC)$.

Proof. By Definition 2.3(1), the inclusion mapping $i : a/0 \hookrightarrow L$ is in $\text{Mor}(SC)$, and, by Definition 2.3(2) the projection

$$p : L' \rightarrow 1'/f(b), \quad p(y) = y \lor f(b), \quad \forall y \in L',$$

is also in $\text{Mor}(SC)$. Thus $g := p \circ f \circ i : a/0 \rightarrow 1'/f(b)$ is in $\text{Mor}(SC)$.

The kernel of g is $(b \lor k) \land a$. Indeed, for $x \in a/0$, we have

$$g(x) = f(b) \iff f(x) \lor f(b) = f(b) \iff f(x \lor b) = f(b) \iff x \lor b \lor k = b \lor k \iff x \leq b \lor k \iff x \leq (b \lor k) \land a.$$

Since $g(a) = f(a \lor b)$, it follows that the isomorphism induced by the linear morphism g is

$$\bar{g} : a/((b \lor k) \land a) \rightarrow f(a \lor b)/f(b), \quad x \mapsto f(x) \lor f(b).$$

By Definition 2.3(3), we obtain the desired conclusion. □
Corollary 2.5. The following assertions hold for a linearly closed subcategory \mathcal{SC} of \mathcal{LM}, a morphism $f : L \to L'$ in \mathcal{SC} with kernel k, and elements $a, b \in L$.

(1) If $a/0 \in \mathcal{SC}$, then both intervals $a/(a \wedge k)$ and $f(a)/0'$ are in \mathcal{SC}, and the canonical morphism
\[\alpha : a/(a \wedge k) \to f(a)/0' \]
induced by f is an isomorphism in $\text{Mor}(\mathcal{SC})$.

(2) If $1'/f(b) \in \mathcal{SC}$, then both intervals $1/(b \vee k)$ and $f(1)/f(b)$ are in \mathcal{SC}, and the canonical morphism
\[\beta : 1/(b \vee k) \to f(1)/f(b) \]
induced by f is an isomorphism in $\text{Mor}(\mathcal{SC})$.

Proof. (1) Apply Proposition 2.4 first for $b = 0$, and then for $a = 1$. □

Corollary 2.6. The following assertions hold for a linearly closed subcategory \mathcal{SC} of \mathcal{LM}, $L \in \mathcal{C}$, and $a, b \in L$.

(1) If $a/0 \in \mathcal{C}$ and $1/b \in \mathcal{C}$, then $a/(a \wedge b) \in \mathcal{C}$, $(a \vee b)/b \in \mathcal{C}$, and the canonical isomorphisms
\[\varphi : a/(a \wedge b) \simeq (a \vee b)/b, \quad \varphi(x) = x \vee b, \quad \forall x \in a/(a \wedge b), \]
\[\psi : (a \vee b)/b \simeq a/(a \wedge b), \quad \psi(y) = y \wedge a, \quad \forall y \in (a \vee b)/b, \]
are both in $\text{Mor}(\mathcal{SC})$.

(2) Suppose that $1 = a \vee b$ (this means that $1 = a \vee b$ and $a \wedge b = 0$). If $a/0 \in \mathcal{C}$ and $1/b \in \mathcal{C}$, then the linear morphism
\[q : L \to a/0, \quad q(x) := (x \vee b) \wedge a, \quad \forall x \in L, \]
is in $\text{Mor}(\mathcal{SC})$. Moreover, q is a surjective linear morphism with kernel b.

(3) If $0/0 \in \mathcal{C}$, then, the mapping $o : L \to 0/0, \quad o(x) = 0, \quad \forall x \in L$, is in $\text{Mor}(\mathcal{SC})$.

(4) If $K \in \mathcal{C}$, $0/0 \in \mathcal{C}$, and there exists a morphism from K to L in $\text{Mor}(\mathcal{SC})$, then the mapping $K \to L, \ x \mapsto 0$, is in $\text{Mor}(\mathcal{SC})$.

Proof. (1) Apply Proposition 2.4 for $L' = L$ and $f = 1_L$. Then $\overline{g} = \varphi$ is in $\text{Mor}(\mathcal{SC})$. Since $\psi = \varphi^{-1}$, by Definition 2.3(4), we have $\psi \in \text{Mor}(\mathcal{SC})$.

(2) With notation from (1) above, we have $q = \psi \circ p$, where
\[p : L \to 1/b, \quad p(x) = x \lor b, \quad \forall x \in L. \]

For the last part of (2), see [4, Example 0.2(3)].

(3) Take \(a = 0 \) and \(b = 1 \) in (2).

(4) Compose the inclusion mapping of \(0/0 \) into \(L \) with the previous mapping \(o \) and the supposed morphism from \(K \) to \(L \). \(\square \)

We present now two examples where linearly closed subcategories naturally occur: in locally small Abelian categories and in \(\tau \)-saturated submodules with respect to a hereditary torsion theory \(\tau \) on the category Mod-\(R \).

Example 2.7. Let \(\mathcal{X} \) be a non-empty class of objects of a locally small Abelian category \(\mathcal{A} \), in particular a non-empty class of right \(R \)-modules. We assume that \(\mathcal{X} \) is hereditary, i.e., it is closed under subobjects; this means that for every \(X \in \mathcal{X} \) and subobject \(Y \) of \(X \) in \(\mathcal{A} \), we have \(Y \in \mathcal{X} \).

For any \(X' \subseteq X \) in \(\mathcal{A} \), we denote by \([X', X]\) the interval in the lattice \(\mathcal{L}(X) \), and by

\[\varphi_{X/X'} : [X', X] \xrightarrow{\sim} \mathcal{L}(X/X') \]

the canonical lattice isomorphism \(Z \mapsto Z/X' \), which is clearly a linear morphism of lattices.

We shall associate to \(\mathcal{X} \) a linearly closed subcategory \(\mathcal{SC}_\mathcal{X} \) having

\[\mathcal{C}_\mathcal{X} := \{ [X', X] \mid X \in \mathcal{X}, \ X' \subseteq X \} \]

as class of objects, and as morphisms those mappings that are induced by morphisms \(f : X/X' \to Y/Y' \) in \(\mathcal{A} \), i.e., arise as compositions

\[[X', X] \xrightarrow{\varphi_{X/X'}} \mathcal{L}(X/X') \xrightarrow{f_*} \mathcal{L}(Y/Y') \xrightarrow{\varphi_{Y/Y'}^{-1}} [Y', Y]. \]

Recall that for any morphism \(f : A \to B \) in \(\mathcal{A} \) we denoted by \(f_* \) the so called direct image mapping

\[f_* : \mathcal{L}(A) \to \mathcal{L}(B), \quad f_*(A') = f(A'), \ \forall A' \in \mathcal{L}(A). \]

By [4, Lemma 5.1], any such mapping \(f_* \) is a linear morphism of lattices, so, the morphisms in \(\mathcal{SC}_\mathcal{X} \), as compositions of linear morphisms of lattices, are also linear morphisms of lattices.

Notice that the transition from morphisms in \(\mathcal{A} \) to their direct image mappings is functorial, i.e., for any morphisms \(A \xrightarrow{f} B \) and \(B \xrightarrow{g} C \) we have \((g \circ f)_* = g_* \circ f_* \) and \((1_A)_* = 1_{\mathcal{L}(A)} \). Therefore, if \(f \) is an isomorphism in \(\mathcal{A} \), then \(f_* \) is a linear lattice isomorphism and \((f_*)^{-1} = (f^{-1})_* \).

Clearly, \(\mathcal{SC}_\mathcal{X} \) is a subcategory, not necessarily full, of the category \(\mathcal{LM} \). We are now going to show that \(\mathcal{SC}_\mathcal{X} \) is indeed a linearly closed subcategory of \(\mathcal{LM} \), i.e., it verifies the properties (1) - (4) of Definition 2.3.
For property (1), let \([X', X] \in \mathcal{C}_X\), and let \(Y \in [X', X]\). Because the class \(\mathcal{X}\) is hereditary, we have \(Y \in \mathcal{X}\). Clearly, the inclusion mapping \([X', Y] \hookrightarrow [X', X]\) is induced by the inclusion morphism \(Y/X' \hookrightarrow X/X'\) in \(\mathcal{A}\), so \(t \in \text{Mor}(\mathcal{SC}_X)\), as desired.

For property (2), let \([X', X] \in \mathcal{C}_X\), and let \(Y \in [X', X]\). Then \(Y \in \mathcal{X}\). We have to prove that the mapping
\[
\pi : [X', X] \rightarrow [Y, X], \quad \pi(Z) = Y + Z, \quad \forall Z \in [X', X],
\]
is induced by a certain morphism in \(\mathcal{A}\), namely by the canonical epimorphism \(q : X/X' \twoheadrightarrow X/Y\) in \(\mathcal{A}\), i.e.,
\[
\pi = \varphi_{X/Y}^{-1} \circ q_* \circ \varphi_{X/X'}.
\]
Indeed
\[
(\varphi_{X/Y}^{-1} \circ q_* \circ \varphi_{X/X'})(Z) = (\varphi_{X/Y}^{-1} \circ q_*)(Z/X') = \varphi_{X/Y}^{-1}((Y + Z)/Y) = Y + Z = \pi(Z), \quad \forall Z \in [X', X].
\]

To verify the property (3), let \(\alpha : [X', X] \rightarrow [Y', Y]\) be a morphism in \(\mathcal{SC}_X\). This means that \(\alpha\) is induced by a morphism \(f : X/X' \rightarrow Y/Y'\) in \(\mathcal{A}\), i.e.,
\[
\alpha = \varphi_{Y/Y'}^{-1} \circ f_* \circ \varphi_{X/X'}.
\]
Set \(K := \text{Ker}(f)\) and \(I := \text{Im}(f)\). Since \(\mathcal{A}\) is an Abelian category, we have \(K = U/X'\) and \(I = V/Y'\) for some \(X' \subseteq U \subseteq X\) and \(Y' \subseteq V \subseteq Y\). Now, observe that \(V \in \mathcal{C}\) because the given class \(\mathcal{C}\) is hereditary, so \([U, X] \in \mathcal{C}_X\) and \([Y, V] \in \mathcal{C}_X\).

Further, let
\[
\overline{f} : (X/X')/(U/X') \rightarrow V/Y' \quad \text{and} \quad h : X/U \rightarrow (X/X')/(U/X')
\]
be the canonical isomorphisms in \(\mathcal{A}\), and set \(g := \overline{f} \circ h\). Then \(g_* = \overline{f}_* \circ h_*\) is an isomorphism in \(\mathcal{LM}\). If we set \(\overline{\alpha} := \varphi_{V/Y'} \circ g_* \circ \varphi_{X/U}\), then it is easily checked that the obtained isomorphism \(\overline{\alpha} : [U, X] \rightarrow [Y', V]\) in \(\mathcal{LM}\) is a restriction of the given morphism \(\alpha\), i.e., \(\overline{\alpha}(Z) = \alpha(Z), \quad \forall Z \in [U, X]\). To conclude that \(\overline{\alpha} \in \text{Mor}(\mathcal{SC}_X)\), we have to prove that \(U\) is the kernel of the given linear mapping \(\alpha\), i.e., \(\alpha(W + U) = \alpha(W), \quad \forall W \in [X', X]\).

Indeed, for any \(W \in [X', X]\), we have
\[
\alpha(W + U) = (\varphi_{Y/Y'}^{-1} \circ f_* \circ \varphi_{X/X'})(W + U) = (\varphi_{Y/Y'}^{-1} \circ f_*)((W + U)/X') = \\
= \varphi_{Y/Y'}^{-1}((f(W + U)/X')) = \varphi_{Y/Y'}^{-1}(f(W/X') + f(U/X')) = \\
= \varphi_{Y/Y'}^{-1}(f(W/X') + f(K)) = \varphi_{Y/Y'}^{-1}(f(W/X')) = \alpha(W).
\]
To prove the property (4), let \(\alpha : [X', X] \to [Y', Y] \), \(\alpha \in \text{Mor} (\mathcal{SC}_X) \). This means that \(\alpha \) is induced by a morphism \(f : X/X' \to Y/Y' \) in \(\mathcal{A} \), i.e.,
\[
\alpha = \varphi_{Y'/Y}^{-1} \circ f_* \circ \varphi_{X/X'}^{-1}.
\]
Assume that \(\alpha \) is an isomorphism in \(\mathcal{LM} \), so a bijective mapping. Then \(f_* \) is also a bijective mapping.

Let \(K := \text{Ker} (f) \). Then, \(f_* (K) = f(K) = 0 = f_*(0) \), where 0 is the zero object of \(\mathcal{A} \), so \(K = 0 \) because \(f_* \) is an injective mapping. Thus \(f \) is a monomorphism. We also have \(\alpha(X) = Y \) because \(\alpha \), as a lattice isomorphism, carries the greatest element of \([X', X] \) onto the greatest element of \([Y', Y] \). Then \(f(X/X') = Y/Y' \), i.e., \(f \) is an epimorphism, so a bimorphism. Thus \(f \) is an isomorphism in \(\mathcal{A} \). This implies that \(\alpha^{-1} \) is induced by \(f^{-1} \), i.e., \(\alpha^{-1} \) is an isomorphism in \(\text{Mor} (\mathcal{SC}_X) \), as desired. \(\square \)

We shall discuss now another circumstance where the linearly closed subcategories naturally occur, namely in lattices of \(\tau \)-saturated submodules with respect to a hereditary torsion theory \(\tau \) on the category \(\text{Mod-} R \). To do that, we recall the following result.

Lemma 2.8. ([1, Lemma 3.4.4]). The following statements hold for a module \(M_R \) and submodules \(P \subseteq N \) of \(M_R \).

1. The mapping \(\alpha : \text{Sat}_\tau (N/P) \to \text{Sat}_\tau (N/P) \), \(X/P \mapsto X/P \), is a lattice isomorphism.
2. \(\text{Sat}_\tau (N) \simeq \text{Sat}_\tau (N) \).
3. If \(M/N \in \mathcal{T} \), then \(\text{Sat}_\tau (M) \simeq \text{Sat}_\tau (N) \).
4. If \(N, P \in \text{Sat}_\tau (M) \), then the assignment \(X \mapsto X/P \) defines a lattice isomorphism from the interval \([P, N] \) of the lattice \(\text{Sat}_\tau (M) \) onto the lattice \(\text{Sat}_\tau (N/P) \). \(\square \)

Example 2.9. Let \(\tau = (\mathcal{T}, \mathcal{F}) \) be a hereditary torsion theory on \(\text{Mod-} R \), and let \(\mathcal{H} \) be a non-empty class of right \(R \)-modules which is \(\tau \)-hereditary. Recall from [5] that \(\mathcal{H} \) is said to be \(\tau \)-hereditary if for any \(M \in \mathcal{H} \) and \(N \in \text{Sat}_\tau (M) \) one has \(N \in \mathcal{H} \).

For any \(M \in \mathcal{H} \) and \(M' \in \text{Sat}_\tau (M) \), we denote by \([M', M] \) the interval in the lattice \(\text{Sat}_\tau (M) \), and by
\[
\psi_{M/M'} : [M', M] \cong \text{Sat}_\tau (M/M'), \psi(N) := N/M', \forall N \in [M', M],
\]
the canonical lattice isomorphism in Lemma 2.8(4), which is clearly a linear morphism of lattices.

We shall associate to \(\mathcal{H} \) a linearly closed subcategory \(\mathcal{SC}_\mathcal{H} \) having
\[
\mathcal{C}_\mathcal{H} := \{ [M', M] \mid M \in \mathcal{H}, M' \in \text{Sat}_\tau (M) \}.
\]
as class of objects and as morphisms those mappings that are induced by morphisms $f : M/M' \to P/P'$ in Mod-R, i.e., arise as compositions

$$[M', M] \xrightarrow{\psi_{M/M'}} \text{Sat}_\tau(M/M') \xrightarrow{f_\tau} \text{Sat}_\tau(P/P') \xrightarrow{\psi_{P/P'}^{-1}} [P', P].$$

where, for any morphism $f : A \to B$ in Mod-R, f_τ denotes the mapping

$$f_\tau : \text{Sat}_\tau(A) \to \text{Sat}_\tau(B), f_\tau(X) = \overline{f(X)}, \forall X \in \text{Sat}_\tau(A).$$

Notice that f_τ is a linear morphism of lattices by [4, Lemma 6.6]. We deduce that the morphisms in \mathcal{SC}_H, as compositions of linear morphisms of lattices, are also so.

We are now going to show that \mathcal{SC}_H is indeed a linearly closed subcategory of \mathcal{LM}, i.e., it verifies the properties (1) - (4) of Definition 2.3. Essentially, we shall proceed as in Example 2.7 by replacing the lattices $\mathcal{L}(X/X')$ with the lattices $\text{Sat}_\tau(M/M')$, and the intervals $[X', X]$ in the lattice $\mathcal{L}(X)$ with the intervals $[M', M]$ in the lattice $\text{Sat}_\tau(M)$.

For instance, to check the property (1), let $[M', M] \in C_H$ and $N \in [M', M]$. Because the class H is τ-hereditary, we have $N \in H$. Clearly, the inclusion mapping $\iota : [M', N] \to [M', M]$ is induced by the inclusion morphism $N/M' \hookrightarrow M/M'$ in Mod-R, so $\iota \in \text{Mor}(\mathcal{SC}_H)$, as desired.

Similarly, to prove the property (2), let $[M', M] \in C_H$ and $N \in [M', M]$. Then $N \in H$. We have to prove that the mapping

$$\pi : [M', M] \to [N, M], \pi(P) = N \lor P, \forall P \in [M', M],$$

is induced by a certain morphism in Mod-R, namely by the canonical epimorphism $q : M/M' \to M/N$, $q(U/M') = (N + U)/N$, in Mod-R, i.e.,

$$\pi = \psi_{M/N}^{-1} \circ q_\tau \circ \psi_{M/M'}.$$

Indeed, $q_\tau(P/M') = \overline{q(P/M')} = (N + P)/N = (N + P)/N = (N \lor P)/N$, so we have

$$(\psi_{M/N}^{-1} \circ q_\tau \circ \psi_{M/M'})(P) = (\psi_{M/N}^{-1} \circ q_\tau)(P/M') = \psi_{M/N}(N \lor P) = N \lor P = \pi(P), \forall P \in [M', M].$$

To verify the property (3), let $\alpha : [M', M] \to [N', N]$ be a morphism in \mathcal{SC}_H. This means that α is induced by a morphism $f : M/M' \to N/N'$ in Mod-R, i.e.,

$$\alpha = \psi_{N/N'}^{-1} \circ f_\tau \circ \psi_{M/M'}.$$

Set $K := \text{Ker}(f)$ and $I := \text{Im}(f)$. We have $K = U/M'$ and $I = V/N'$ for some $M' \leq U \leq M$ and $N' \leq V \leq N$.

Further, let
We have \(U, M \) = 0 = \(h : M/U \xrightarrow{\sim} (M/M')/(U/M') \) be the canonical module isomorphisms, and set \(g := f \circ h \). Then \(g_\tau = f_\tau \circ h_\tau \) is an isomorphism in \(\mathcal{LM} \).

Because \(\overline{U} \in \text{Sat}_\tau(M) \), \(\overline{V} \in \text{Sat}_\tau(N) \), and the class \(\mathcal{H} \) is hereditary, we have \([\overline{U}, M], [N', \overline{V}] \in \mathcal{C}_\mathcal{H}\). We are going to prove that there exists a linear lattice isomorphism \(\beta : [\overline{U}, M] \xrightarrow{\sim} [N', \overline{V}] \) such that \(\beta \) is the restriction of the given morphism \(\alpha \).

Indeed, the lattice isomorphism \(g_\tau : \text{Sat}_\tau(M/U) \xrightarrow{\sim} \text{Sat}_\tau(V/N') \) yields by Lemma 2.8 the following sequence of canonical lattice isomorphisms

\[
[\overline{U}, M] \xrightarrow{\sim} \text{Sat}_\tau(M/U) \xrightarrow{\sim} \text{Sat}_\tau(\overline{V}/N') \xrightarrow{\sim} [N', \overline{V}].
\]

It is straightforward to check that their composition \(\beta \) is exactly the restriction of the given morphism \(\alpha : [M', M] \longrightarrow [N', N] \) in \(\mathcal{SC}_\mathcal{H} \), i.e., \(\alpha(Z) = \beta(Z), \forall Z \in [U, M] \).

To conclude, we have to prove that \(\overline{U} \) is the kernel of the given linear mapping \(\alpha \), i.e.,

\[
\alpha(W \vee \overline{U}) = \alpha(W), \forall W \in [M', M].
\]

First, notice that \(f(K) \subseteq f(\overline{K}) \) (see the proof of [4, Lemma 6.6]), so \(\overline{U} \subseteq f(\overline{K}) \subseteq f(K) = \overline{\partial} \), and then \(f(K) = f(\overline{K}) = \overline{\partial} \). We have

\[
\alpha(W \vee \overline{U}) = (\psi_{N'/N}^{-1} \circ f_\tau \circ \psi_{M'/M})(W \vee \overline{U}) = (\psi_{N'/N}^{-1} \circ f_\tau)((W \vee \overline{U})/M') =
\]

\[
= \psi_{N'/N}^{-1}(f_\tau((W \vee \overline{U})/M')) = \psi_{N'/N}^{-1}(f_\tau(\psi_{M'/M}(W))) =
\]

\[
= (\psi_{N'/N}^{-1} \circ f_\tau \circ \psi_{M'/M})(W) = \alpha(W),
\]

as desired, because

\[
f_\tau((W \vee \overline{U})/M') = f_\tau((W + \overline{U})/M') = f_\tau((W + \overline{U})/M') =
\]

\[
= f_\tau((W + U)/M') = f_\tau((W/M') + (U/M')) = f_\tau((W/M') \vee (U/M')) =
\]

\[
f_\tau(W/M') \vee f_\tau(\overline{K}) = f(W/M') \vee f(\overline{K}) = f(W/M') \vee \overline{\partial} = f_\tau(\psi_{M'/M}(W)).
\]

To prove the property (4), let \(\alpha : [M', M] \longrightarrow [N', N], \alpha \in \text{Mor}(\mathcal{SC}_\mathcal{H}) \). This means that \(\alpha \) is induced by a morphism \(f : M/M' \longrightarrow N/N' \) in \(\text{Mod}-R \), i.e.,

\[
\alpha = \psi_{N'/N}^{-1} \circ f_\tau \circ \psi_{M'/M'}.
\]

Assume that \(\alpha \) is an isomorphism in \(\mathcal{LM} \), so a bijective mapping. Then \(f_\tau \) is also a bijective mapping. Notice that \(M/M', N/N' \in \mathcal{F} \) because \(M' \in \text{Sat}_\tau(M) \) and \(N' \in \text{Sat}_\tau(N) \).

Let \(K := \text{Ker}(f) \). Then, \(f_\tau(K) = f(\overline{K}) = \overline{\partial} = 0 = f_\tau(0) \), so \(K = 0 \) because \(f_\tau \) is an injective mapping, so \(f \) is a monomorphism.

We have also \(\alpha(M) = N \) because \(\alpha \), as a lattice isomorphism, carries the greatest element of \([M', M]\) onto the greatest element of \([N', N]\). Then \(f(M/M') = N/N' \), i.e., \(f \) is an epimorphism, so an isomorphism in \(\text{Mod}-R \). This implies that \(\alpha^{-1} \) is induced by \(f^{-1} \), which shows that \(\alpha^{-1} \) is an isomorphism in \(\text{Mor}(\mathcal{SC}_\mathcal{H}) \), as desired. \(\square \)
3. Preradicals on linearly closed subcategories of \mathcal{LM}

In this section we define the more general concept of a preradical on a linearly closed subcategory of \mathcal{LM} and show that we can associate to preradicals on locally small Abelian categories and module categories equipped with hereditary torsion theories lattice preradicals on the linearly closed subcategories \mathcal{SC}_X and \mathcal{SC}_H discussed in Examples 2.7 and 2.9, respectively. Finally we show that how the main results of [5] also hold for any preradical on a linearly closed subcategory of \mathcal{LM} which is weakly hereditary.

Proposition 3.1. The following assertions are equivalent for a a linearly closed subcategory \mathcal{SC} of \mathcal{LM}.

1. \mathcal{C} is weakly hereditary.
2. The monomorphisms in the category \mathcal{SC} are injective.
3. For any $L \in \mathcal{C}$, the subobjects of L in the category \mathcal{SC} can be regarded as the initial intervals $a/0$ of $L = 1/0$, $a \in L$.

Proof. (1)\implies(2): Let $f : L \to L'$ be a monomorphism in \mathcal{SC}. If k is the kernel of f, then $K := k/0 \in \mathcal{C}$ since \mathcal{C} is weakly hereditary. By Definition 2.3, the inclusion mapping $\kappa : K \hookrightarrow L$ is in $\text{Mor}(\mathcal{SC})$. Also, since \mathcal{C} is weakly hereditary, we have $0/0 \in \mathcal{C}$, and by Corollary 2.6(4) the zero mapping $o : K \to L$ is in $\text{Mor}(\mathcal{SC})$. We have $f \circ \kappa = f \circ o$, and since f is a monomorphism, we deduce that $\kappa = o$, thus $k = 0$, and consequently, f is injective.

(2)\implies(3): Let (S, α) be a subobject of L in \mathcal{SC}. Then α is a monomorphism, thus injective by (2). By Definition 2.3, its image $a/0 \in \mathcal{C}$, for $a \in L$, and since its kernel is zero, α induces an isomorphism $\overline{\alpha} : S \xrightarrow{\sim} a/0$, which is in $\text{Mor}(\mathcal{SC})$. Since the inclusion mapping of $i : a/0 \hookrightarrow L$ is a monomorphism in $\text{Mor}(\mathcal{SC})$, it follows that $(a/0, i)$ is a subobject of L in \mathcal{SC} that is isomorphic to (S, α) via $\overline{\alpha}$.

(3)\implies(1): For $a \in L$ and inclusion mapping $i : a/0 \hookrightarrow L$, $(a/0, i)$ is a subobject of L in \mathcal{SC}, hence $a/0 \in \mathcal{C}$. \hfill\Box

Definition 3.2. Let \mathcal{SC} be a linearly closed subcategory of \mathcal{LM} such that its class of objects \mathcal{C} is weakly hereditary. A lattice preradical on \mathcal{SC} is any functor $r : \mathcal{SC} \to \mathcal{SC}$ satisfying the following two conditions.

1. $r(L) \leq L$, i.e., $r(L)$ is a subobject of L, for any $L \in \mathcal{SC}$.
2. For any morphism $f : L \to L'$ in \mathcal{SC}, $r(f) : r(L) \to r(L')$ is the restriction and corestriction of f to $r(L)$ and $r(L')$, respectively. \hfill\Box
Let \mathcal{SC} be a linearly closed subcategory of \mathcal{LM} such that its class of objects \mathcal{C} is weakly hereditary, and let $r: \mathcal{SC} \rightarrow \mathcal{SC}$ be a lattice preradical on \mathcal{SC}. By Proposition 3.1, for every $L \in \mathcal{C}$ and $a \in L$, the subobject $r(a/0)$ of L in \mathcal{SC} is necessarily an initial interval of $a/0$. We denote

$$r(a/0) := a^r/0.$$

If $a \leq b$ in L then $a/0$, $b/0$ are in \mathcal{C} because \mathcal{C} is weakly hereditary. The inclusion mapping $i : a/0 \hookrightarrow b/0$ is in $\text{Mor}(\mathcal{SC})$ since \mathcal{SC} is linearly closed. Applying r we obtain the morphism $r(i) : a^r/0 \rightarrow b^r/0$ as a restriction of i, and so $a^r \subseteq b^r$.

Recall that a preradical on an Abelian category \mathcal{A} is just a subfunctor of the identity functor $1_\mathcal{A}$ of \mathcal{A}.

Proposition 3.3. Let \mathcal{X} be a hereditary class of objects of a locally small Abelian category \mathcal{A}, and let r be a preradical on \mathcal{A}. Then r canonically yields a preradical ϱ on the linearly closed subcategory

$$\mathcal{SC}_{\mathcal{X}} := \{ [X', X] \mid X \in \mathcal{X}, X' \subseteq X \}$$

of \mathcal{LM} discussed in Example 2.7.

Proof. With notation of Example 2.7, let $[X', X] \in \mathcal{SC}_{\mathcal{X}}$. Then $r(X/X') = Y/X'$ for some $Y \in \mathcal{A}$ with $X' \subseteq Y \subseteq X$. We set $X^r := Y$. Because \mathcal{X} is a hereditary subclass of \mathcal{A}, we have $X^r \in \mathcal{X}$, so we can define the following mapping

$$\varrho : \mathcal{SC}_{\mathcal{X}} \rightarrow \mathcal{SC}_{\mathcal{X}}, \varrho([X', X]) := [X', X^r], \forall [X', X] \in \mathcal{SC}_{\mathcal{X}}.$$

By definition, $\varrho([X', X])$ is a subobject of $[X', X]$ for any $[X', X] \in \mathcal{SC}_{\mathcal{X}}$. To conclude that ϱ is a preradical on $\mathcal{SC}_{\mathcal{X}}$, we must show that for any morphism $\alpha : [X', X] \rightarrow [Y', Y]$ in $\mathcal{SC}_{\mathcal{X}}$, we have

$$\alpha(\varrho([X', X])) \subseteq \varrho(\alpha([X', X])), \text{ i.e., } \alpha([X', X^r]) \subseteq [Y', Y^r], \forall [X', X] \in \mathcal{SC}_{\mathcal{X}}.$$

Indeed, by the definition of the morphisms in $\mathcal{SC}_{\mathcal{X}}$, α is induced by a morphism $f : X/X' \rightarrow Y/Y'$ in \mathcal{A}, i.e., arises as a composition

$$[X', X] \xrightarrow{\varphi_{X/X'}} \mathcal{L}(X/X') \xrightarrow{f_*} \mathcal{L}(Y/Y') \xrightarrow{\varphi_{Y/Y'}^{-1}} [Y', Y].$$

Now, the morphism f yields a morphism $r(f) : r(X/X') \rightarrow r(Y/Y')$, i.e., a morphism $r(f) : X^r/X' \rightarrow Y^r/Y'$, and then $f_*(r(X/X')) \subseteq Y^r/Y'$. This shows that

$$\alpha([X', X^r]) = (\varphi_{Y/Y'}^{-1} \circ f_* \circ \varphi_{X/X'})([X', X^r]) \subseteq \varphi_{Y/Y'}^{-1}(Y^r/Y') = [Y', Y^r],$$

as desired. \Box
Proposition 3.4. Let $\tau = (T, F)$ be a hereditary torsion theory on $\text{Mod-} R$, let \mathcal{H} be a τ-hereditary class of right R-modules, and let r be preradical on $\text{Mod-} R$. Then r canonically yields a preradical ϱ_τ on the linearly closed subcategory

$$\mathcal{S}\mathcal{C}_H := \{ [M', M] | M \in \mathcal{H}, M' \in \text{Sat}_\tau(M) \}$$

of $\mathcal{L}\mathcal{M}$ discussed in Example 2.9.

Proof. With notation of Example 2.9, let $[M', M] \in \mathcal{S}\mathcal{C}_H$. Then $r(M/M') = P/M'$ for some $P \in \text{Mod-} R$ with $M' \leq P \leq M$. We set $M'' := \bar{P}$. Because $M \in \mathcal{H}$ and \mathcal{H} is a τ-hereditary subclass of $\text{Mod-} R$, we have $M'' \in \mathcal{H}$, so we can define the following mapping

$$\varrho_\tau : \mathcal{S}\mathcal{C}_H \rightarrow \mathcal{S}\mathcal{C}_H, \varrho_\tau([M', M]) := [M', M''], \forall [M', M] \in \mathcal{S}\mathcal{C}_H.$$

By definition, $\varrho_\tau([M', M])$ is a subobject of $[M', M]$ for any $[M', M] \in \mathcal{S}\mathcal{C}_H$. To conclude that ϱ_τ is a preradical on $\mathcal{S}\mathcal{C}_H$, we must show that for any morphism $\alpha : [M', M] \rightarrow [N', N]$ in $\mathcal{S}\mathcal{C}_H$, we have

$$\alpha(\varrho_\tau([M', M])) \subseteq \varrho([N', N]), \text{ i.e., } \alpha([M', M'']) \subseteq [N', N''], \forall [M', M] \in \mathcal{S}\mathcal{C}_H.$$

Indeed, by the definition of the morphisms in $\mathcal{S}\mathcal{C}_H$, α is induced by a morphism $f : M/M' \rightarrow N/N'$ in $\text{Mod-} R$, i.e., arises as a composition

$$[M', M] \xrightarrow{\psi_{M/M'}} \text{Sat}_\tau(M/M') \xrightarrow{f_\tau} \text{Sat}_\tau(N/N') \xrightarrow{\psi_{N/N'}^{-1}} [N', N].$$

Now, the morphism f yields a morphism

$$r(f) : P/M' = r(M/M') \rightarrow r(N/N') = Q/N',$$

i.e., $f(P/M') \subseteq Q/N'$. Then, by [5, Lemma 4.4], $f(\bar{P}/M') \subseteq \bar{Q}/N'$, so

$$f_\tau(M'/M') = f(\bar{P}/M') \subseteq \bar{Q}/N' = \bar{Q}/N' = Q/N' = N'/N'.$$

This shows that

$$\alpha([M', M'']) = (\psi_{N/N'}^{-1} \circ f_\tau \circ \psi_{M/M'})([M', M'']) \subseteq \psi_{N/N'}^{-1}(N'/N') = [N', N'],$$

as desired. \qed

Remarks 3.5. (1) Observe that Proposition 3.3 (respectively, Proposition 3.4) also holds when the given preradical r on the category \mathcal{A} (respectively, $\text{Mod-} R$) is a preradical only on the given hereditary class \mathcal{X} (respectively, τ-hereditary class \mathcal{H}) under the additional condition that \mathcal{X} is a cohereditary (respectively, \mathcal{H} is a τ-cohereditary) class. Recall that a non-empty subclass of \mathcal{A} is said to be cohereditary if it is closed under quotient objects, and
if \(\tau = (T, F) \) is a hereditary torsion theory on \(\text{Mod-}R \), then, a non-empty class \(\mathcal{H} \) of right \(R \)-modules is said to be \(\tau \)-cohereditary if for any \(M \in \mathcal{H} \) and \(M' \in \text{Sat}_\tau(M) \) one has \(M/M' \in \mathcal{H} \).

(2) A thorough examination of the proofs in [5] shows that they are performed using only morphisms as in Definition 2.3 and Corollary 2.6. So, all the results of [5], in particular [5, Theorem 2.4] and its Corollary 2.5 also hold for any lattice preradical on a linearly closed subcategory of \(\mathcal{LM} \) which is weakly hereditary.

\[\square \]

References

Toma Albu
Simion Stoilow Institute of Mathematics of the Romanian Academy
Research Unit 5, P.O. Box 1 - 764
RO - 010145 Bucharest 1, Romania
E-mail: Toma.Albu@imar.ro

Mihai Iosif
Bucharest University, Department of Mathematics
Academiei Str. 14, RO - 010014 Bucharest 1, Romania
E-mail: miosifg@gmail.com